Новости № 40(2016)

Официально


Глава ФАНО Михаил Котюков обсудил с делегацией Кубы и, в частности, с научным советником Госсовета республики Фиделем Кастро Диас-Балартом (сыном Фиделя Кастро) перспективы научно-технического сотрудничества, информирует пресс-служба ФАНО.

Рособрнадзор и Минздрав провели семинар для медицинских вузов, на котором шла речь о том, как повысить качество образования в сфере здравоохранения.

Глава Минобрнауки Ольга Васильева заявила на заседании Комитета Совета Федерации по науке, образованию и культуре о приостановке процесса объединения вузов, сообщает ТАСС.




Регионы


Белгородском госуниверситете начал работу уникальный геолого-минералогический музей, собравший более 1500 образцов минералов и горных пород со всего мира.

Томский политехнический университет стал официальном членом коллаборации эксперимента LHCb, проводимого на Большом адронном коллайдере в Европейском центре ядерных исследований.

Создать взаимосвязанную систему подготовки высококвалифицированных кадров для туристической отрасли Северного Кавказа предложил Северо-Кавказский федеральный университет.

СНГ


Интердайджест


30.09.2016
Из микроскопического животного тихоходки выделен белок, который повысил устойчивость человеческой ДНК к ионизирующему излучению. С подробностями - Nature News.

30.09.2016
В пещере, где обитали индонезийские люди - “хоббиты”, найдены зубы Homo sapiens, что допускает сосуществование нашего вида с миниатюрным родственником. Об этом сообщает Nature News.

Веб



Комиссия читинских культурно-просветительных организаций обратилась с воззванием ко всем кооперативам и культурным организациям Забайкалья с просьбой о всемерной поддержке скорейшего открытия в Иркутске университета.





















дикая порнуха.



Новые черты Прованса. На юге Франции ученые мира формируют облик будущей энергетики
Международное сотрудничество
№ 23(2015)

05.06.2015


На стройплощадке Международного экспериментального термоядерного реактора (ITER) рядом с исследовательским центром Кадараш на юге Франции появилось первое оборудование. Это важная веха в многолетней истории проекта, стоимость которого превышает 10 миллиардов евро. 18 и 19 мая этого года увидеть нынешнее состояние “стройки века” смогли журналисты из стран, участвующих в проекте. Элементам будущей гигантской установки, доставляемым сюда из разных концов земного шара, еще только предстоит быть собранными в сложные узлы реактора, который может стать прообразом основного источника энергии для нужд человечества к концу XXI века.

Несколько рядов колючей проволоки среди провансальского пейзажа отделяют место, куда больше не ступит нога постороннего человека. Вход на территорию строго по пропускам, фотосъемка окрестностей, как и положено на стратегическом объекте, запрещена, для самой стройки - исключение. На строительной платформе, занимающей площадь 42 гектара, возвышаются огромные башенные краны. В городе таких не увидишь, каждый из этих кранов может поднять и перенести груз весом в тысячу тонн. Площадка покрыта полутораметровым слоем бетона, под которым уже сооружена антисейсмическая система, призванная защитить будущую установку в случае землетрясения: несколько сотен железобетонных колонн, каждая высотой 1,7 метра с антисейсмической прокладкой на вершине. Безопасность Международного термоядерного экспериментального реактора относится к категории “Часто задаваемые вопросы”.
Термоядерная реакция безо­пасна в принципе. В отличие от ядерного распада, используемого на атомных станциях, термоядерная реакция практически не производит радиоактивных отходов, от которых человечеству приходится избавляться, и в этом ее основное преимущество. Принцип термоядерной реакции в том, что при слиянии ядер изотопов водорода дейтерия и трития с образованием ядра гелия выделяется колоссальная энергия. Эта энергия поддерживает существование Солнца и других звезд, а воспроизведение процесса на Земле предполагается использовать, преобразовав полученную энергию, например, в энергию электричества. Но для этого реакция термоядерного синтеза должна быть управляемой, а для управления нужен реактор. Принцип такого реактора называется токамак.
Слово “токамак”, принятое сейчас во всем мире, происходит от русского словосочетания “тороидальная камера с магнитными катушками”. Термин был введен русскими физиками Игорем Таммом и Андреем Сахаровым в 1950-х, первый токамак был разработан под руководством Льва Арцимовича в Институте атомной энергии им. И.В.Курчатова в Москве. Началом эры токамаков считается 1968 год.  
В токамаке термоядерная реакция протекает в высокотемпературной плазме, для удержания которой создается мощное магнитное поле. Структурно токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания магнитного поля. Это магнитное поле называется тороидальным. Вакуумную камеру заполняют смесью дейтерия и трития. Затем с помощью индуктора в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы.
Протекающий через плазму ток нагревает ее, но также создает вокруг себя магнитное поле. Это круговое магнитное поле называется полоидальным, оно направлено перпендикулярно тороидальному полю. В результате образуется конфигурация, в которой винтовые магнитные силовые линии “обвивают” плазменный шнур. Полоидальное поле необходимо для стабильного удержания плазмы в такой системе. Для дополнительного нагрева плазмы используется микроволновое излучение.  
Физики говорят, что каждый грамм смеси изотопов водорода (дейтерия и трития), запускающей термоядерную реакцию, дает энергию, эквивалентную энергии 8000 литров нефти.
За три десятка лет, прошедших с момента зарождения проекта ИТЭР во время Женевского саммита “Рейган - Горбачев” в ноябре 1985 года, физики и эксперты в смежных областях просчитали все условия работы установки для управляемой термоядерной реакции и согласовали узловые технические параметры. Однако преобразовывать энергию термоядерной реакции с пользой для человечества можно разными путями, а потому теоретические работы не прекращаются, и ИТЭР - международная школа строительства термоядерного реактора - даст еще не одну диссертацию. Международный термоядерный экспериментальный реактор объединяет 2000 ученых и инженеров из 34 стран. Это 28 стран Европейского союза, а также Россия, США, Япония, Китай, Республика Корея и Индия.  
Генеральный директор ИТЭР - Бернар Биго (Bernard Bigot), в прошлом председатель Комиссариата по атомной энергии и альтернативным источникам энергии Франции (CEA) и верховный представитель Франции в проекте. Он вступил в должность в феврале этого года, сменив представителя Японии Осаму Мотоджиму (Osamu Motojima). 18 мая он встретился с журналистами в штаб-квартире ИТЭР. Отвечая на вопрос корреспондента “Поиска” о возможном осложнении участия России в проекте в связи с определенными политическими разногласиями на международной арене, господин Биго отметил, что это “никогда не касалось и не касается проекта ИТЭР”. “Политические лидеры смотрят далеко вперед и понимают, что, навредив проекту ИТЭР, они возьмут на себя огромную ответственность, потому что воспрепятствуют устойчивому обеспечению человечества безопасной энергией”, - сказал Бернар Биго.
Комментируя вклад России в ИТЭР, генеральный директор проекта подчеркнул значимость участия нашей страны в научной составляющей проекта и напомнил о том, что именно в России была разработана концепция токамака, которая лежит в основе термоядерного реактора.
“Мне было очень приятно во время недавнего визита в Москву посетить Курчатовский институт, где уже было построено множество токамаков”, - отметил господин Биго. “Так что, поверьте, вклад Российской Федерации очень весом, причем не только с научной, но и с промышленной точки зрения, и что важно - Россия всегда полностью выполняет свои обязательства, в том числе и по поставкам”, - добавил он.
Россия ответственна за 25 компонентов ИТЭР. “Уже пошли и близки к завершению поставки сверхпроводника для магнитной системы токамака”, - сообщил “Поиску” специалист по информационным связям Российского агентства ИТЭР Александр Петров. В России производят два типа сверхпроводников: сверхпроводники для катушек тороидального поля (на основе соединения ниобий-олово, Nb3Sn) и сверхпроводники для полоидального магнитного поля (их делают из сплава ниобий-титан, Nb-Ti). Поставка сверхпроводников первого типа по планам должна завершиться в 2015 году, поставки сверхпроводников для полоидального магнитного поля продолжатся в следующем году. Александр Петров подчеркнул, что речь идет только о планах: “Все, что запланировано по поставкам в ИТЭР, не только у России, но и у других стран, может сдвинуться по не зависящим от них причинам”.
По словам Александра Петрова, в этом же году должна начаться поставка шинопроводов для системы электропитания.
Некоторым системам, за которые ответственна Россия, еще предстоят испытания, а другие их успешно прошли. Как рассказал Александр Петров, в мае в Нижнем Новгороде в присутствии представителей ИТЭР на производственном предприятии “ГИКОМ” проходили заводские испытания прототипа гиротронного комплекса - уникального оборудования для генерации тока и нагрева плазмы. “Фактически это гигантские микроволновые печи с совершенно феноменальными характеристиками. Они способны при мощности 1 мегаватт на частоте 170 гигагерц давать импульсы длиной в 1000 секунд”, - сказал Александр Петров. Прошедшие в Нижнем Новгороде испытания дают основания подписать с ИТЭР окончательную экспертную оценку проекта и приступить к промышленному производству. Если все пойдет по плану, то первый гиротрон на 80 процентов будет изготовлен в этом году.
Продолжаются работы по созданию компонентов “первой стенки” токамака. “Это очень существенная разработка, поскольку речь идет о компоненте, непосредственно обращенном к плазме”, - говорит Александр Петров.
Основные работы по производству российских компонентов ИТЭР намечены на 2016-2017 годы.
Выступая перед журналистами в штаб-квартире ИТЭР, представитель японского агентства рассказал, что для производства оборудования реактора в его стране используются существующие возможности автомобильной промышленности. То, что должно производиться для ИТЭР в России, во многом потребовало создания соответствующих условий с нуля. Так, Россия взяла на себя обязательство по производству 20 процентов всех сверхпроводников, но сверхпроводниковой промышленности в стране на момент утверждения проекта ИТЭР не существовало. В СССР сверхпроводники производили в Усть-Каменогорске, который находится на территории современного Казахстана, а в ВНИИНМ им. академика А.А.Бочвара было, по словам Александра Петрова, “буквально штучное производство”. Но на основе сохранившейся в институте технологии в городе Глазов в Удмуртии “в минимальные сроки с максимальной эффективностью было создано производство в гигантских масштабах, и за шесть лет специалисты Чепецкого механического завода полностью выполнили обязательства по производству 225 тонн сверхпроводящих стрендов”, рассказал представитель российского агентства.
Еще один показательный пример эффективного производственного решения касается облицовки “первой стенки”, той самой, что обращена к плазме. Как отметил Александр Петров, ее планировалось производить из одного материала, а эксперименты убедили, что необходимы более термостойкие материалы, и наиболее пригодным оказался бериллий с высокими теплоизоляционными свойствами. Бериллиевые технологии очень сложны по физическим и инженерным показателям, но в России была создана собственная технология производства этого металла, которая сейчас используется для создания бериллиевой облицовки конструкции “первой стенки” реактора.
“Я был практически на всех предприятиях и могу сказать точно: всё, что связано с ИТЭР, оборудовано по последнему слову техники и полностью соответствует задачам, а иначе просто нельзя”, - считает Александр Петров.
Задачи, стоящие перед создателями уникальной установки, имеют численное выражение: проектная мощность ИТЭР - 0,5 гигаватта, температура плазмы - от 100 до 200 миллионов градусов Цельсия, в 10 раз больше, чем температура солнечного ядра. Магнитное поле - около 10 Тесла, в 200 тысяч раз больше магнитного поля Земли.
Следующим этапом на пути к промышленному термоядерному реактору станет токамак DEMO (DEMOnstration Power Plant) с мощностью от 2 до
4 гигаватт. Это проект электростанции, использующей термоядерный синтез для демонстрации коммерческой привлекательности термоядерной энергетики. Постройка DEMO планируется после успешного ввода в строй ИТЭР, то есть предположительно после 2027 года.
Один из научных руководителей проекта Марк Хендерсон (Marc Henderson) сравнил ИТЭР со строительством Кафедрального собора Барселоны (Собор Святого Креста и Святой Евлалии), который возводили несколько поколений архитекторов и рабочих. Следовательно, рассказывать о проекте нового генератора энергии для человечества, создаваемого поколениями физиков, будет не одно поколение журналистов.

Марина Аствацатурян
Фото автора и Аспасии Даскалопулу  


 

Отзывы

Чтобы оставить отзыв необходимо авторизоваться или зарегистрироваться



 

Статьи на тему

Посреди среды. Технопарки манят молодежь.
Более 1700 участников из 70 стран мира собрала в Москве 33-я Всемирная конференция Международной ассоциации технопарков и зон инновационного развития (IASP 2016). Генеральный секретарь IASP Луис Санс, приветствуя делегатов и гостей, отметил, что это первый столь представительный ежегодный форум за всю историю существования ассоциации. /№ 40(2016)
С места в карьер? Российская робототехника готовится к рывку.
На Международном форуме ресурсоэффективности, который недавно прошел в Томском политехническом университете, российские и зарубежные эксперты обсудили перспективы развития мировой робототехники. /№ 40(2016)
О пользе ориентиров. Нашим научным журналам есть к чему стремиться.
Всего несколько недель остается до завершения “журнального проекта”, который с 2014 года проводится в рамках гранта ФЦП ИР по господдержке российских научных изданий. Цель проекта - продвижение отечественных журналов... /№ 40(2016)

РЕФОРМА РАН


В Екатеринбурге прошла внеочередная сессия Общего собрания Уральского отделения РАН, посвященная предстоящим выборам в академию. Как отметил во вступительном слове вице-президент РАН, председатель УрО Валерий Чарушин, эти выборы проходят после пятилетнего перерыва, связанного с реформой, и поэтому исключительно важны для всего научного сообщества и его региональных сегментов, тем более что впервые после объединения трех академий они проводятся в новом формате.

Профсоюз Российской академии наук разместил на своем сайте план проведения кампании за увеличение финансирования науки. Для начала ученые собираются развернуть борьбу против возможного сокращения расходов на исследования в 2016 году и предстоящем трехлетии...

Ведущие российские ученые - академики, члены-корреспонденты и профессора РАН - выступили с открытым письмом Президенту РФ Владимиру Путину, в котором подвергли жесткой критике результаты научной реформы.

На заседании Бюро Научно-координационного совета при ФАНО в очередной раз решалась судьба Якутского научного центра Сибирского отделения РАН.

Завершился прием заявок на получение статуса эксперта Российской академии наук. Удалось ли РАН сформировать корпус специалистов, способных оценить результаты исследований во всех областях науки и перспективы предлагаемых к реализации государственных проектов?

Конференции


30.09.2016
Школа состоится 25-27 октября 2016 года в МГТУ им. Н.Э.Баумана при поддержке Российского научного фонда.

30.09.2016
Перечень научных конференций, симпозиумов, съездов, семинаров и школ, проводимых подведомственными ФАНО России организациями в 2016 году.

23.09.2016
Всероссийская конференция «Наука и инновации – повышение эффективности прикладной науки» состоится 12 октября в гостиничном комплексе "Президент-отель" г. Москва.

Текущие конкурсы


23.09.2016
Стартовала кампания по распределению социальных выплат (государственных жилищных сертификатов) 2017 года молодым ученым из подведомственных ФАНО организаций. Списки и документы молодых сотрудников, желающих получить сертификаты, должны быть представлены не позднее 1 ноября текущего года.

23.09.2016
Совет при Президенте РФ по науке и образованию объявляет о приеме с 15 сентября 2016 года документов на соискание Государственной премии Российской Федерации в области науки и технологий за 2016 год.

23.09.2016
Изменения по конкурсу 2017 года проектов фундаментальных научных исследований, проводимому совместно федеральным государственным бюджетным учреждением “Российский фонд фундаментальных исследований” и Национальным институтом онкологии США.

23.09.2016
Конкурс 2017 года проектов фундаментальных научных исследований, выполняемых молодыми учеными (Эврика. Идея).

23.09.2016
Российский научный фонд начал прием заявок на конкурс по поддержке международных научных коллективов. Конкурс проводится совместно с Немецким научно-исследовательским сообществом (DFG).

Вакансии


09.09.2016
Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П.Ширшова Российской академии наук объявляет конкурс на замещение вакантной должности...

12.08.2016
Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН объявляет конкурс на замещение следующих вакантных должностей...

29.07.2016
Образовательное частное учреждение высшего образования “Академия МНЭПУ” объявляет о проведении выборов на замещение вакантных должностей...





опрос

Какие рубрики нашей газеты Вам наиболее интересны?




Copyright 2010
Главная страница   |   О газете  |  Партнеры  |  Команда Поиска  |  РЕФОРМА РАН