Новости № 32-33(2016)

Официально


В вузовских соцсетях и аккаунтах Минобрнауки продолжается флешмоб “Вызов инноватора”...

В Интернете проходит голосование за освобождение Дмитрия Медведева от должности председателя Правительства РФ.

В первом полугодии этого года ФАНО провело 184 проверки подведомственных организаций. Половина из них касались использования федерального имущества, остальные - соблюдения законодательства в сфере финансово-бюджетной и финансово-хозяйственной, закупочной деятельности и осуществления научной деятельности...




Регионы


На базе учебно-оздоровительного комплекса Волгоградского государственного социально-педагогического университета прошел “Студенческий марафон ВГСПУ”. Мероприятие было посвящено 85-летию этого вуза.

При поддержке правительства региона началось кардинальное обновление инфраструктуры Тюменского госуниверситета.

Научно-технический совет Фонда перспективных исследований принял решение о поддержке двух новых проектов.

СНГ


Интердайджест


12.08.2016
Эксперименты на самом чувствительном детекторе гипотетических частиц темной материи не принесли результатов. Об этом физики сообщили на конференции по темной материи (Identification of Dark Matter 2016) в Шеффилде, Великобритания. Подробности - на physicsworld.com.

12.08.2016
Международная группа астрономов подтвердила открытие космическим аппаратом “Кеплер” (Kepler) еще сотни новых планет вне Солнечной системы. С подробностями - NASA News Release.

12.08.2016
Новая карта коннектома удвоила количество известных участков коры головного мозга человека. Об этом сообщают Nature News; New York Times.

Веб


12.08.2016
Эксперты авторитетного мирового рейтинга Webometrics Ranking of World Universities опубликовали результаты своих исследований по итогам первой половины 2016 года.


На Корфу найдено так называемое Евангелие Мирослава, написанное кириллицей в 1180 г. и принадлежавшее с незапамятных времен сербскому королевскому дому. В 1903 г., во время дворцовой революции, оно пропало и отыскалось лишь теперь.















Пределы совершенства. Каково будущее нейроморфных вычислительных систем?
Наука
№ 33-34(2015)

21.08.2015


- Создание искусственных нейронных сетей, имеющих сходство с работой головного мозга человека, - одно из перспективных направлений развития ИT-технологий. Но прежде чем говорить о реализации эффективных нейроморфных систем, или “электронного мозга”, необходимо разработать новую аппаратную базу, моделирующую деятельность и взаимосвязи десятков тысяч нервных клеток. Подобные исследования проводятся в ведущих научных центрах США и Европы, а с недавних пор и в России. Полтора года назад Российским научным фондом был поддержан проект группы ученых из МФТИ по созданию функциональных прототипов электронных синапсов и построению на их основе теоретической модели нейроморфной вычислительной системы. Руководитель проекта, заведующий лабораторией функциональных материалов и устройств для наноэлектроники, кандидат физико-математических наук Андрей Зенкевич (на верхнем снимке) рассказал в беседе с корреспондентом “Поиска”, как ученые пытаются “догнать” живую природу. В разговоре также приняли участие его молодые коллеги и активные участники проекта РНФ - старший научный сотрудник лаборатории Юрий Матвеев и заместитель руководителя ЦКП МФТИ, научный сотрудник лаборатории Дмитрий Негров.
- Андрей Владимирович, давайте начнем по порядку: как получилось, что за решение столь масштабной задачи взялась вузовская лаборатория?
- В рамках участия в Проекте 5-100 на Физтехе сменилась парадигма: многие исследования, которые раньше велись на базовых кафедрах в академических и отраслевых НИИ, решено перенести в кампус вуза. Был объявлен конкурс, созданы несколько десятков новых лабораторий, часть которых ведет фундаментальные исследования, часть - научно-прикладные. Открытая полтора года назад лаборатория функциональных материалов и устройств для наноэлектроники относится ко второму типу, она нацелена на сотрудничество с компанией ОАО “НИИМЭ и Микрон”, которая ставит задачу разработать новые технологии создания устройств энергонезависимой памяти, и МФТИ - один из партнеров в ее решении. Наши амбиции в реализации проекта по гранту РНФ возникли не на пустом месте: несколько лет назад в МФТИ было закуплено современное ростовое, аналитическое и технологическое оборудование для Центра коллективного пользования, создана “чистая зона”, что позволяет комбинировать изготовление экспериментальных устройств на промышленных линиях “Микрона” и в университетских лабораториях. А главное, на Физтех удалось привлечь знающих людей, в том числе из-за рубежа, для того чтобы здесь правильно организовать науку. Одним словом, не будет преувеличением сказать, что сейчас созданы для ученых все условия, и теперь сделаем мы что-то передовое или нет - зависит только от нас.
- Какова научная предыстория проекта?
- Сегодня в большинстве энергонезависимых запоминающих устройств используется память “флэш”, в основе изготовления которой - стандартные кремниевые технологии. Но, несмотря на все ее преимущества, и у нее есть ограничения и недостатки, поэтому существует потребность в устройствах энергонезависимой памяти, построенной на альтернативных принципах. Такова память, работающая на эффекте обратимого резистивного переключения, который наблюдается в некоторых тонкопленочных структурах. Представьте изначально изолирующую пленку материала, в которой при приложении строго определенного напряжения возникает “контролируемый” пробой, после чего она становится проводящей. Оказывается, существуют такие материалы и такие условия, которые позволяют “залечить” пробой при приложении напряжения обратной полярности (или большей амплитуды), после чего пленка снова становится изолирующей. Таким образом, у нас есть два состояния - “0” и “1”, а значит, возможно создать на основе подобных материалов бинарную память без всяких транзисторов: два электрода, а между ними - тонкая пленка. Эффекты обратимого резистивного переключения обнаружили давно, но поначалу совсем плохо понимали стоящие за ними физические механизмы и не задумывались об их использовании для создания устройств памяти. Активно резистивная память исследуется в последние 5-10 лет - отчасти потому, что крупные компании увидели здесь возможности коммерциализации: описанная технология позволяет делать миниатюрные устройства, которые по энергопотреблению и скорости записи гораздо лучше традиционной флэш-памяти.
- Где они могут использоваться?
- Одно из применений - в смартфонах, которые потребляют сегодня достаточно много энергии, из-за чего их приходится постоянно подзаряжать. Если бы энергопотребление этих устройств удалось сократить в несколько или даже несколько десятков раз, было бы отлично! А плюс к этому, повторюсь, они могут работать гораздо быстрее, чем флэш-память...
- Резистивная память, как можно догадаться, не единственная замена флэш-па-мяти...
- Верно. Различных концепций энергонезависимой памяти сегодня достаточно много. Это и магниторезистивная, и сегнетоэлектрическая, и память на фазовых переходах... Какой в итоге вариант будет широко коммерциализован - вопрос открытый. Здесь сыграют роль цена, надежность и воспроизводимость. Одно из преимуществ элементов резистивной памяти состоит в том, что для их изготовления можно использовать те материалы, которые уже применяются в кремниевых технологиях, например оксид гафния. Кстати, совсем недавно компании Intel и Micron (США) объявили о выводе на рынок в следующем году устройств энергонезависимой памяти огромной емкости на основе резистивного переключения, хотя подробностей пока не приводят.
Если уж зашла речь об эволюции устройств памяти, необходимо остановиться на сравнительно недавнем открытии, у которого также есть своя предыстория. В то время, когда экспериментаторы еще и не думали о резистивной памяти, теоретики развивали теорию электрических цепей. Так, в 1971 году профессор Калифорнийского университета в Беркли Леон Чуа (Leon O. Chua) сформулировал идею мемристора (memristor, от memory - “память” + resistor - “электрическое сопротивление”). В отличие от резистора, значение сопротивления которого всегда одинаково, сопротивление мемристора зависит от “предыстории”, то есть от того, как долго пропускать через него ток. Чем дольше проходит ток, тем сильнее уменьшается его сопротивление. Причем если пустить ток в обратном направлении, то сопротивление начнет снова увеличиваться. Такие элементы были экспериментально созданы в 2008 году командой исследователей из компании Hewlett Packard под руководством физика Стэнли Уильямса (R. Stanley Williams). Кстати, первый автор в той знаменитой статье в Nature - выходец из России, выпускник физтеха Дмитрий Струков.
- В чем достоинства таких устройств?
- Достоинство в том, что мемристор может принимать не только стандартные для обычных устройств цифровой памяти положения “0” или “1”, но и любые значения в промежутке между ними, то есть способен работать как в цифровом (дискретном), так и в аналоговом режиме. В результате появились идеи, что на основе мемристоров можно создавать вычислительные сети, аналогичные сетям нейронов головного мозга.
- Довольно неожиданный переход от элементов электрической цепи к нейронным связям!
- В 1980-е годы биологи исследовали, как работают синапсы головного мозга, и обнаружили, что их поведение подчиняется математической модели мемристора, предложенного Чуа. То есть синапс нервной системы - это один из примеров биологического мемристора.
- Придется напомнить, как работают синапсы...
- Хорошо. Хотя мы не биологи, но поневоле этот вопрос изучили. Мозг состоит из огромной сети нейронов, каждый из которых представляет ядро с подходящими и отходящими от него “нитями” (соответственно, дендритами и аксонами), соединяющими его с другими нейронами. По дендритам и аксонам проходят сигналы - нервные импульсы. Место пересечения или контакта “нитей” соседних нейронов - это и есть синапсы. В биологическом мозге в синапсах в результате подачи нервных импульсов протекают химические процессы, которые изменяют их “передаточную функцию” и “вес” в зависимости от того, какие сигналы проходят по перекрещивающимся “нитям”. Но в модельном представлении можно считать их электрическими устройствами, только не с фиксированным, а с переменным сопротивлением. В нашем мозге они образуют гигантскую и чрезвычайно сложную сеть - примерно 100 миллиардов нейронов, каждый из которых соединен с тысячами других! Как в результате организована наша память, а тем более сознание - до сих пор не совсем понятно, но есть важные догадки и построенные на них очень упрощенные модели, которые можно пытаться воспроизвести, как говорится, “в железе”.
- Как же повторить то, что создано природой, если не понятен принцип действия? Да и нужно ли?
- Нужно. Мозг работает очень эффективно в решении многих задач, например, в области классификации объектов или распознавания образов. Вы видите 1000 лиц, и среди них за долю секунды находите то, которое нужно. И несмотря на то что в мозге нет ничего очень “быстрого”: любой сигнал проходит примерно за 0,1 секунды, распознавание образов происходит за такое же время, то есть за один такт, так как вся информация процессируется параллельно, а не последовательно, как в современных компьютерах. Вот в этом и заключаются посыл и естественные амбиции попытаться сделать что-то похожее. Сейчас предпринимаются попытки построить систему, элементы которой - “слои нейронов”, а связи между ними - “синапсы”, веса которых, то есть сила этих связей, будут меняться, но главное при этом, что обработка входящей информации происходит параллельно. Это и есть нейроморфные вычислительные сети. Понятно, что об их создании люди думали и раньше. Но если до недавнего времени (2008 год) речь шла о том, что каждый нейрон и синапс необходимо моделировать громоздким (несколько десятков) набором стандартных кремниевых транзисторов, то теперь можно изготовить “синапс” нанометровых размеров - гораздо меньше, чем в биологическом мозге.
Юрий Матвеев: - Большинство современных методов распознавания и классификации образов базируются на так называемых bio-inspired (“вдохновленных природой”) технологиях. Они работают на основе математических моделей нейросетей, которые как раз были “вдохновлены” исследованиями мозга. Математика помогает делать что-то проще, эффективнее, но главная проблема в том, что нейронная сеть обсчитывается на обычном цифровом компьютере, и компьютер в данном случае чудовищно неэффективен: он тратит огромное количество энергии, но все равно не справляется со многими задачами, которые мы без труда решаем “в уме”. И хотя в нашей голове нет ничего маленького, никаких нанотехнологий (все аксоны длинные, синапсы большие), человеческий мозг объемом 1 литр и потребляемой мощностью около 100 Вт - само совершенство. А компьютеры, которые могут хоть в малой степени воспроизвести его функциональность, занимают целые залы и требуют мегаватты мощности...
- Таким образом, решение проблемы - в создании искусственных нейросетей. Есть ли успехи в этом направлении?
Андрей Зенкевич: - 95 процентов нейроморфной науки - это попытка создать новые модели, которые будут эффективно работать на обычных компьютерах, например обсчитывать изображения. Сложность в том, что нейронную сеть надо очень тонко настраивать, обучать. Прорыв возник в тот момент, когда группа из Hewlett Packard сообщила о созданном мемристоре. Был очень большой резонанс и очень большие ожидания: “Создан электронный синапс!” Ребята из HP показали, что такие устройства могут быть компактнее реальных структур мозга и иметь размеры 10х10х10 кубических нанометров. То есть сегодня научились делать устройства, которые функционально напоминают синапсы, в том числе и по энергопотреблению. Теперь надо реализовать нейронные сети “в железе”, то есть научиться изготавливать их на чипах. И это - передний край мировой науки. Считаные научные группы в мире демонстрируют какую-то функциональность нейронных сетей с использованием мемристоров для распознавания пока очень простых образов, например цифр. Необходимо научиться работать с этими элементами, матрицами из них для того, чтобы дальше, используя нейроны, которые тоже выполнены “в железе”, но по традиционной кремниевой технологии, построить нейронные сети и продемонстрировать, как с их помощью удается производить вычисления, классифицировать, распознавать объекты.
- А как выглядят ваши достижения в решении этой задачи?
- Мы добились от элементов резистивной памяти свойств мемристоров, где будет переключение не резкое, а плавное, где можно множество раз увеличивать и уменьшать сопротивление, то есть добиться их “пластичности”. Для этого такие структуры надо было научиться растить, формировать в наноразмерных устройствах, а затем заставить правильно работать. Сегодня мы уже научились это делать, умеем экспериментально получать индивидуальные мемристоры. Но идея нашего проекта заключается в том, чтобы использовать не индивидуальные мемристоры, а попытаться сделать из них хотя бы небольшие матрицы. Это тоже проблема, которую не перепрыгнешь, потому что добиться воспроизводимости характеристик мемристоров, если их не 1 или 2, а десятки, не так просто. Сейчас мы хотим использовать матрицы мемристоров для того, чтобы на их основе разработать соответствующую архитектуру. То есть то, как это будет выглядеть “в железе”. В качестве синапсов в нашем проекте предполагаются мемристоры, а в качестве нейронов будут изготовлены устройства на кремниевых чипах по стандартной технологии компании “Микрон”. Вот в чем наш большой план.
- Вы собираетесь штурмовать серьезные высоты...
Дмитрий Негров: - Насколько нам известно, нигде в мире реализовать такую систему полностью “в железе” пока не удалось. В этом смысле планы у нас мирового уровня. Строго говоря, в проекте РНФ мы их и не заявляли. Мы собирались делать мемристоры, проверять их синаптические свойства, строить из них матрицы и получить какой-то простейший демонстратор на основе всего этого, чтобы затем выстраивать компьютерные модели нейроморфных систем. То есть мы не рассчитывали на изготовление даже простейшего нейрочипа, который был бы полностью самодостаточен. Но если в ближайшем будущем мы этот чип получим (а предпосылки есть), тогда можно будет говорить о результате мирового класса!


Беседовала Светлана БЕЛЯЕВА
Фото Николая СТЕПАНЕНКОВА  
 


 

Отзывы

Чтобы оставить отзыв необходимо авторизоваться или зарегистрироваться



 

Статьи на тему

Откуда золото взялось?
Для кого-то золото ассоциируется с благополучием и безмятежной жизнью, а для многих ученых - с кропотливым, напряженным трудом. Правда, не остающимся без вознаграждения, в нашем случае - в виде гранта Президента России. /№ 32-33(2016)
По наводке гравитации
Гравитация. Эта таинственная сила, удерживающая нас на Земле, а планеты - на их орбитах, кажется совершенно неподвластной человеку. И это действительно так, но лишь отчасти. Влиять на закон всемирного тяготения, один из универсальных законов природы, мы, конечно, не можем, но использовать его проявления в своих интересах - сколько угодно. /№ 32-33(2016)
Маркеры начеку. С тяжелыми заболеваниями помогут справиться антитела-протеазы.
Не один десяток лет свирепствуют ВИЧ-инфекция и СПИД, который она вызывает, а надежного лекарства от них пока нет. Ученые не бездействуют, они упорно ищут способы обуздания коварного заболевания... /№ 32-33(2016)

РЕФОРМА РАН


Профсоюз Российской академии наук разместил на своем сайте план проведения кампании за увеличение финансирования науки. Для начала ученые собираются развернуть борьбу против возможного сокращения расходов на исследования в 2016 году и предстоящем трехлетии...

Ведущие российские ученые - академики, члены-корреспонденты и профессора РАН - выступили с открытым письмом Президенту РФ Владимиру Путину, в котором подвергли жесткой критике результаты научной реформы.

На заседании Бюро Научно-координационного совета при ФАНО в очередной раз решалась судьба Якутского научного центра Сибирского отделения РАН.

Завершился прием заявок на получение статуса эксперта Российской академии наук. Удалось ли РАН сформировать корпус специалистов, способных оценить результаты исследований во всех областях науки и перспективы предлагаемых к реализации государственных проектов?

Традиционная двадцать первая по счету Поволжская ассамблея Профсоюза работников РАН в этом году проходила в Переславле-Залесском на базе Института программных систем (ИПС) им. А.К.Айламазяна РАН.

Конференции


18.08.2016
С 20 по 23 сентября 2016 года в Казани, на базе Казанского (Приволжского) федерального университета, состоится крупное общественное мероприятие федерального значения в сфере науки – II Международная научная конференция «Наука будущего»...

15.08.2016
С 26 по 30 сентября 2016 года на базе Московского Физико-Технического Института (МФТИ) (г. Долгопрудный, Россия) состоится международная конференция "БИОМЕМБРАНЫ 2016: механизмы старения и возрастных заболеваний".

12.08.2016
Перечень научных конференций, симпозиумов, съездов, семинаров и школ, проводимых подведомственными ФАНО России организациями в 2016 году.

Текущие конкурсы


12.08.2016
Премия Президента Российской Федерации в области науки и инноваций для молодых ученых является высшим признанием заслуг молодых ученых и специалистов перед обществом и государством. Премия Президента Российской Федерации присуждается гражданам Российской Федерации...

12.08.2016
О проведении конкурсного отбора научных проектов, выполняемых научными коллективами исследовательских центров и (или) научных лабораторий образовательных организаций высшего образования, подведомственных Министерству образования и науки Российской Федерации.

12.08.2016
Конкурс 2017 года проектов ориентированных фундаментальных научных исследований по актуальным междисциплинарным темам.

12.08.2016
Британский Совет открывает прием заявок на участие в двух грантовых проектах, направленных на укрепление связей между учеными России и Великобритании.

29.07.2016
Конкурс 2017 года проектов по подготовке информационных материалов по результатам научных проектов, выполненных при поддержке федерального государственного бюджетного учреждения “Российский фонд фундаментальных исследований”.

Вакансии


12.08.2016
Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН объявляет конкурс на замещение следующих вакантных должностей...

29.07.2016
Образовательное частное учреждение высшего образования “Академия МНЭПУ” объявляет о проведении выборов на замещение вакантных должностей...

15.07.2016
Институт океанологии им. П.П.Ширшова Российской академии наук объявляет конкурс на замещение вакантных должностей...





опрос

Какие рубрики нашей газеты Вам наиболее интересны?




Copyright 2010
Главная страница   |   О газете  |  Партнеры  |  Команда Поиска  |  РЕФОРМА РАН