Новости № 20(2016)

Официально


Кабинет министров отчитался об основных результатах выполнения указов президента, подписанных 7 мая 2012 года - в день инаугурации Владимира Путина.

В Госдуме открылась выставка “НИЦ “Курчатовский институт”: от атомного проекта к природоподобным технологиям”.

Совет по образованию и науке при председателе Госдумы обсудил вопросы правового регулирования научной и научно-технической деятельности.




Регионы


Томский госуниверситет систем управления и радиоэлектроники открыл первый в Томской области детский технопарк.

Очередное заседание Совета ректоров вузов Тульской области прошло с участием врио губернатора А.Дюмина и других представителей местной власти. Обсуждалась роль образования в развитии промышленного комплекса региона.

В Северном (Арктическом) федеральном университете прошло заседание Ученого совета, на котором утверждены изменения в управленческой структуре головного вуза.

СНГ


Интердайджест


20.05.2016
Прочитав геном моркови, ученые приступили к его анализу и обнаружили важный с точки зрения питательной ценности ген. Подробности - в GenomeWeb.

20.05.2016
НАСА определило планетный статус еще 1284 небесных тел, обнаруженных миссией “Кеплер”, - это крупнейшее на сегодняшний день единовременное открытие новых планет. С подробностями - NASA News Release.

20.05.2016
Эксперименты на мышах подтвердили предположение о том, что вирус Зика вызывает дефекты развития головного мозга у новорожденных. Об этом сообщает The Scientist.

Веб



Война наложила свою тяжкую руку на такое, казалось бы, мирное и далекое от треволнений жизни учреждение, как фонд имени Нобеля, из которого выдаются премии ученым, оказавшим за данный год больше всего услуг человечеству.












Формула открытия. Результат эксперимента предскажет математическая модель.
Наука
№ 48(2015)

27.11.2015

Казалось бы, где радиофизика и где мозг? И могут ли они быть связаны? Ответы на эти вопросы Александр Симонов начал искать еще в школе, когда взялся за свой первый научный проект: построить математическую модель и описать динамику работы нейрона. Проект помог Александру поступить в университет, где он продолжал разрабатывать эту, по его мнению, интереснейшую, тему, присоединившись к группе, возглавляемой доктором физико-математических наук Виктором Казанцевым. Диплом Александр посвятил исследованию сети из нейроноподобных клеток и на их основе сделал систему обработки информации. Четыре года назад А.Симонов защитил кандидатскую диссертацию по механизмам генерации сигналов в сетях нейронов. Сегодня старший преподаватель радиофизического факультета Нижегородского госуниверситета им. Н.И.Лобачевского кандидат физико-математических наук Александр Симонов возглавляет группу теоретической нейробиологии и математического моделирования сигналов и функций нейронных систем мозга в составе крупнейшего в России Нижегородского нейронаучного центра.
- Человеческий мозг содержит около 100 миллиардов нейронов - это сопоставимо с числом звезд в нашей галактике, - рассказывает Александр Симонов. - Комбинаций связей между ними может быть больше, чем атомов во Вселенной. Наш мозг настолько сложен, что знаний, накопленных биологами и нейрофизиологами, сегодня уже недостаточно, на помощь приходят математики, радиофизики и специалисты по ИT-технологиям. Радиофизический подход позволяет изучать окружающий мир и применяется едва ли не во всех областях современной науки: экономике, социологии, химии... Не являются исключением науки о жизни и в их числе - нейронаука (наука о мозге). Ведь процессы, происходящие в мозге, имеют колебательно-волновую природу, и их удобно описывать на языке математических формул и уравнений. Так мы получили мощный аппарат для исследования механизмов функционирования мозга и, применяя его, пытаемся ответить на вопрос, как мозг столь эффективно обрабатывает информацию.

- Что именно вы исследуете?
- Мы строим математические модели (чаще всего это системы дифференциальных уравнений), описывающие ключевые процессы в живых клетках, например генерацию электрического импульса на мембране нейрона в ответ на сильное возмущение со стороны других нейронов, передачу этого импульса другим клеткам через специальные контакты, синапсы; влияние импульсов, переданных ранее через этот синапс, на эффективность передачи новых, следующих за ними, сигналов.
- Сигналы могут влиять на то, как они будут передаваться?
- Да, предыдущие сигналы могут как улучшить, так и нарушить синаптическую нейропередачу. В мозге это происходит постоянно и называется синаптической пластичностью. Благодаря этому феномену мозг способен хранить и обрабатывать новую информацию, обучаться, адаптироваться, решать сложные задачи. Рассматривая такие процессы на уровне большой сети, состоящей из множества нейронов, мы наблюдаем сложные популяционные сигналы, которые воспроизводят активность сетей живых нейронов. Изменяем параметры модели, чтобы сделать сигналы, генерируемые ею, похожими на наблюдаемые экспериментально. Так сказать, настраиваем модель.
- А зачем, если в живой ткани все процессы происходят сами собой?
- Моделирование позволяет вести компьютерные расчеты процессов, которые биологи изучают при экспериментах, иными словами, проводить свои “виртуальные” опыты, или, как еще говорят, исследования in silico. Можно изучать динамические режимы работы модели, исследовать роль биологически значимых параметров в формировании таких режимов и переходов между ними, устанавливать соответствия этих режимов с различными состояниями мозга. Но главное, предсказать открытие нового феномена, исследование которого было затруднено из-за технологических ограничений, высокой стоимости или потому, что постановка такого эксперимента просто никому не приходила в голову. В этом и заключается суть фундаментальных исследований, которыми занимается наша группа. С помощью математического моделирования мы изучаем механизмы работы мозга, настраивая модель на воспроизведение экспериментальных данных. Языком точных наук объясняем биологические законы, пытаемся предсказать новые экспериментальные открытия... Но в этой работе есть и прикладная составляющая. Новое знание, которое мы стремимся получить, можно будет использовать для выработки стратегии лечения нейродегенеративных заболеваний, победить которые так и не удается.
- Ученые самых разных специальностей бьются над этой проблемой. Что предлагаете вы?
- Известны лишь первопричины возникновения таких болезней, однако механизмы их развития на уровне сетей нейронов и самого мозга остаются загадкой. Например, при некоторых видах эпилепсии наблюдаются нарушения функционирования белковых комплексов, поддерживающих баланс нейронной возбудимости. Это приводит к генерации высокосинхронной активности мозга, что и происходит во время эпилептических припадков. К тому же характерный вид сигналов, записываемых при помощи электроэнцефалограммы, также хорошо известен. Однако между этими уровнями - молекулярно-клеточным и всего мозга - существует огромный разрыв. Что происходит на уровне нейронных популяций или нейронных сетей? Почему в одних случаях развивается повышенная синхронная активность на большом участке мозга и это приводит к эпилептическому припадку, а в других - синхронизация на уровне небольших популяций, наоборот, способствует формированию новых следов памяти? Поскольку именно сеть нейронов является функциональной единицей мозга, изучение природы нейродегенеративных заболеваний нужно проводить на уровне нейронных сетей. Чтобы заполнить этот разрыв, мы используем математическое моделирование. В результате нарушений на клеточном ли уровне, или из-за повреждения сигнальных путей в нейронных сетях происходят изменения, и они генерируют “неправильные” сигналы.
Исследуя математическую модель генерации и распространения сигналов, можно понять, какие динамические процессы лежат в основе патологической активности клеток мозга, что нужно изменить, чтобы вернуть их нормальную деятельность. Найти детальное объяснение, как возникает эта нездоровая активность, выявить условия, при которых развивается патология, оказывается намного легче, когда перед вами не настоящая живая ткань, а математическая модель, в которой можно как угодно менять значения параметров. При этом важно помнить, что большинство заболеваний мозга связаны с определенными нарушениями динамического баланса: режим здорового функционирования теряет устойчивость, и, как следствие, развивается патология. Или уровень шума в генерируемой активности становится настолько высоким, что информация теряется и возникают “ложные” сигналы. Эти задачи и изучает радиофизика. Нужно только правильно записать математическую формулировку, провести необходимые расчеты и оценки параметров, описать сценарии перехода между динамическими режимами...
- Если все можно рассчитать на компьютере, зачем вообще эксперименты?
- Нет, совсем отказываться от них, конечно, нельзя. Но можно существенно сократить расходы и время, как, например, это делается при создании некоторых лекарств, действие которых сначала рассчитывают на компьютере, а затем уже приступают к экспериментам. Но в отличие от молекулярной биологии в науке о мозге, к сожалению, достоверных данных для построения таких точных моделей пока недостаточно.
Вернемся к примеру с заболеваниями мозга. После проведения моделирования и компьютерных расчетов мы знаем, какие параметры модели оказывают наибольшее влияние на переход между нормальной и патологической динамикой, а главное, понимаем биологический смысл этих параметров. Остается провести эксперимент и подтвердить или опровергнуть результаты наших теоретических исследований. Так что эксперименты необходимы. Как мы уже отмечали, сама модель нуждается в “настройке”, поскольку результаты ее расчетов зависят от того, какие параметры мы в нее заложим. А неизвестных параметров в нейробиологических системах очень много, поэтому необходимо постоянно ориентироваться на данные экспериментов. К счастью, в нашей группе такая возможность есть. Мы сотрудничаем со многими отечественными учеными. Поддерживаем контакты с коллегами из Европы, а также Японии, Мексики, США, Канады.
- Каковы перспективы ваших исследований?
- Мы стараемся понять, каковы динамические механизмы генерации сигналов в нейронных сетях мозга. Какие структуры клеток и какие сигналы мозг использует, чтобы кодировать информацию? Какова роль этих сигналов в обработке информации и формировании когнитивных функций? Ответы на эти вопросы помогут создать новый класс нейроморфных вычислительных интеллектуальных систем, превосходящих действующие сегодня.
- Как будут работать такие системы?
- Они смогут использовать обнаруженные в мозге принципы параллельной обработки информации и совместить их с мощностью компьютеров, применяя современную полупроводниковую электронику, работающую быстрее и стабильнее, чем белковые комплексы. Такие системы смогут, например, управлять роботами, заменяющими человека на вредных производствах или, скажем, при ликвидации последствий техногенных и природных катастроф. То есть принимать решения и действовать в самых сложных, непредсказуемых условиях.
- Коллеги за рубежом знают о ваших исследованиях?
- Да, мы публикуем результаты исследований в ведущих мировых изданиях, обычно по нескольку статей в год. На них ссылаются известные ученые. Выступаем на конференциях, встречаемся с коллегами, обсуждаем совместные проекты и способы их финансирования.
- Кстати о финансах. Кто вас поддерживает?
- Наша группа под руководством профессора Михаила Цодыкса удостоилась гранта Российского научного фонда для поддержки отдельных научных групп. Фонд предоставил нам 15 миллионов рублей на три года. Мы получили возможность привлекать талантливых студентов и аспирантов к работе в нашей команде, участвовать в зарубежных конференциях. В прошлом году я был на стажировке в Институте наук Вейцмана (Израиль), в этом году побывал на двух международных форумах по математическому моделированию и нейроинженерии в Германии и Испании: делал стендовые доклады, познакомился с результатами зарубежных исследователей. Установил новые контакты с иностранными группами для проведения совместных исследований. Общие проекты, естественно, потребуют дополнительных грантов. Возможно это будут гранты того же РНФ, но в рамках конкурсов, проводящихся совместно с другими зарубежными фондами.
- Почти 10 лет вы занимаетесь этой темой. Что дальше, какие задачи ставите?
- Я читаю лекции, веду спецкурсы, работаю со студентами, аспирантами и хочу, чтобы они оценили перспективность и важность исследований, которые проводит наша группа, заинтересовались нашим проектом и приняли в нем участие. Предложил бы им перспективные работы по математическому моделированию для изучения таких явлений в нейронных сетях мозга, как принятие решений, рабочая память, фокусировка внимания, формирование моторных команд, других когнитивных функций. Это направление связано с прикладными проектами нашего коллектива, в частности разработками для технологии “интерфейс - мозг - компьютер”, систем регистрации и декодирования сигналов мозга, систем управления экзоскелетонными устройствами, роботизированными протезами, антропоморфными роботами. Возможности, как видите, неограниченные.

Подготовил Юрий Дризе
Фото предоставлено А.Симоновым


 

Отзывы

Чтобы оставить отзыв необходимо авторизоваться или зарегистрироваться



 

Статьи на тему

Весенний взлет. МГУ штурмует новые орбиты.
Спутник “Ломоносов”, созданный учеными МГУ в рамках программы развития вуза и запущенный в конце апреля с космодрома Восточный, 21 мая должен заработать на полную проектную мощность. /№ 20(2016)
Анатомия прогноза. Сейсмологи делают ставку на дискретный анализ.
Чтобы принять необходимые меры, позволяющие свести к минимуму ущерб от бедствия, хорошо бы заблаговременно знать, когда и с какой силой проявятся подземные толчки. Увы, получить точные сведения об этом - задача непростая. Приблизиться к ее решению позволят работы старшего научного сотрудника Геофизического центра РАН Бориса ­ДЗЕБОЕВА. /№ 20(2016)
Помехи при трансляции. Предотвратить мутации в организме можно еще на стадии эмбриона.
Не может такой безум­но сложный и в то же время предельно согласованный мир возникнуть просто так, без высшего творческого участия. Но, несмотря на случающиеся внутренние сомнения, ученые продолжают изучать мир, который запрятан глубоко в нас и благодаря которому мы живем, думаем, развиваемся. /№ 20(2016)

РЕФОРМА РАН


Подписано постановление Общего собрания Российской академии наук “О реформе РАН, основных научных результатах года и работе президиума РАН в 2015 году”.

В марте этого года Российская академия наук заявила о создании собственного корпуса экспертов, в который войдут специалисты из выполняющих исследования и разработки организаций разной ведомственной принадлежности. О том, как проходит этот процесс, рассказал главный ученый секретарь Президиума РАН Михаил Пальцев.

Во время “горячей линии” с Владимиром Путиным несколько вопросов ему задали представители научной и образовательной общественности. "Оправдались ли ожидания первых лет реформы? Как вы оцениваете эффективность взаимодействия Федерального агентства научных организаций и Российской академии наук?”...

Процесс реорганизации научных подразделений Академии наук, инициированный ФАНО в рамках реформы РАН, вызывает, мягко говоря, неоднозначную реакцию научного сообщества. С самого начала и по сей день в адрес инициаторов раздается немало критики, в некоторых коллективах порой возникают конфликтные ситуации. Однако процесс идет, появились некоторые его результаты. Как, например, во Владикавказском научном центре РАН.

Главным вопросом повестки дня Координационного совета Программы фундаментальных научных исследований государственных академий наук на 2013­-2020 годы было утверждение доклада Правительству РФ об итогах реализации программы в 2015 году.

Конференции


20.05.2016
12-16 сентября состоится первая российская конференция “Физика - наукам о жизни” на базе Физико-технического института им. А.Ф.Иоффе. Конференция посвящена интердисциплинарным исследованиям на стыке физики, биологии и медицины.

20.05.2016
Перечень научных конференций, симпозиумов, съездов, семинаров и школ, проводимых подведомственными ФАНО России организациями в 2016 году.

16.05.2016
На IV Международном форуме ведущих вузов, который состоится 2 июня 2015 года в Москве, пройдет презентация пятого ежегодного рейтинга ведущих вузов России.

Текущие конкурсы


20.05.2016
Минобрнауки РФ сообщило о начале конкурсного отбора российских научных организаций и образовательных организаций высшего образования, являющихся участниками ФЦП “Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы”, с целью предоставления им лицензионного доступа к международному индексу научного цитирования Scopus.

13.05.2016
Институт медико-биологических проблем РАН объявляет о приеме в очную аспирантуру (9 бюджетных мест) по направлениям...

13.05.2016
Новая дополнительная тема конкурса 2016 года проектов ориентированных фундаментальных междисциплинарных исследований.

13.05.2016
Конкурс 2017 года проектов фундаментальных научных исследований, проводимый Российским фондом фундаментальных исследований совместно с организациями - участниками Рамочной программы БРИКС в сфере науки, технологий и инноваций.

13.05.2016
Фонд поддержки образования и науки “Алферовский фонд” объявляет конкурс на соискание золотой медали и премии Алферовского фонда за лучшую исследовательскую работу в области естественных наук для молодых ученых (до 33 лет) за 2016 год в номинации “Фотоника”.

Вакансии


20.05.2016
Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П.Ширшова РАН объявляет конкурс на замещение вакантных должностей...

20.05.2016
Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук объявляет конкурс на замещение вакантной должности заведующего лабораторией волоконной оптики.

29.04.2016
Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П.Ширшова Российской академии наук объявляет конкурс на замещение вакантной должности младшего научного сотрудника Научно-координационного океанологического центра по специальности “Физика атмосферы и гидросферы” - 25.00.29 - 1 ед.






опрос

Какие рубрики нашей газеты Вам наиболее интересны?




Copyright 2010
Главная страница   |   О газете  |  Партнеры  |  Команда Поиска  |  РЕФОРМА РАН