Официально


Минобрнауки разрешило заключение договоров о безвозмездном отчуждении исключительного права на результаты интеллектуальной деятельности гражданского назначения на условиях, предусмотренных пунктом 18 (1) Правил осуществления государственными заказчиками управления правами РФ на результаты интеллектуальной деятельности гражданского, военного, специального и двойного назначения, утвержденных постановлением Правительства РФ от 22 марта 2012 г. №233 по установленному перечню.



Премьер-министр Дмитрий Медведев подписал распоряжение о внесении в Госдуму законопроекта, цель которого - закрепление обязательного учета сведений о независимой оценке качества подготовки студентов при государственной аккредитации образовательной деятельности.

Рабочая группа комитета Госдумы по образованию и науке подготовила компромиссные поправки в проект федерального закона «О внесении изменений в Федеральный закон «Об образовании в РФ» в части изучения родного языка из числа языков народов России и государственных языков республик, находящихся в составе РФ.

Правительство одобрило и внесло в Госдуму законопроект «О внесении изменения в статью 92 ФЗ «Об образовании в РФ». В случае его принятия учет сведений о независимой оценке качества подготовки студентов станет обязательным при государственной аккредитации образовательной деятельности.




Новости № 23(2018)

Регионы


Ректор Тольяттинского госуниверситета Михаил Криштал и президент Университета г. Шаосин (Китай) Цзяньли Ван подписали соглашение о создании в опорном ТГУ Академии каллиграфии “Ланьтин”.

В Северо-Кавказском горно-металлургическом институте прошел восьмой Республиканский конкурс научно-исследовательских работ студентов вузов РСО-Алания на соискание премии имени Тазарета Дедегкаева.

Состоялось совместное заседание ученых советов Воронежского госуниверситета и Воронежского государственного медицинского университета имени Н.Н.Бурденко, приуроченное к столетию вузов, в ходе которого ректоры подписали соглашение о сотрудничестве.

СНГ


Интердайджест


Исследователи из больницы Святого Михаила (St. Michael’s Hospital) и Университета Торонто (University of Toronto) в Канаде установили, что витаминные и минеральные добавки в качестве средств профилактики сердечно-сосудистых заболеваний, инфаркта, инсульта и преждевременной смерти неэффективны.

Стали известны имена лауреатов престижной премии Кавли 2018 года: это семь ученых из пяти стран - астрофизики, молекулярные биологи и нейробиологи.

Японские кардиохирурги из Университета Осаки (Osaka University) отныне могут лечить людей с сердечной недостаточностью с использованием клеток, полученных авангардным методом перепрограммирования.


11 июня под руководством Вилькицкого отправляется экспедиция, организованная главным гидрографическим управлением морского комиссариата для производства новых исследований на великом северном пути. Экспедиция отправляется к берегам Малой Земли. В нее вошли суда “Вайгач”, “Калгуев” и “Харитон Лаптев”. Впервые в экспедиции примут участие воздушные аппараты “Илья Муромец” и гидроаэропланы для производства разведок. На этих аппаратах установлены радиостанции.
















Во сне и наяву. Настоящий математик решает задачи круглосуточно.
Наука
№ 22(2018)

01.06.2018

“Арифметические характеризации конечных групп” - каждое слово в этом сочетании человеку непосвященному понятно, а вот вместе... В этом - вся загадочность математики, постичь таинства которой могут лишь избранные. Один из них - кандидат физико-математических наук Наталья МАСЛОВА. Старший научный сотрудник Института математики и механики им. Н.Н.Красовского УрО РАН и доцент Уральского федерального университета им. первого Президента России Б.Н.Ельцина занимается вышеупомянутой темой, причем весьма результативно: публикуется в высокорейтинговых журналах, получила за свой проект грант Президента РФ для молодых ученых. Корреспондент “Поиска” попытался углубиться в математические дебри теории групп. 
- Основное направление моей научной работы - исследование свойств конечных групп и получение их арифметических характеризаций. Еще во время обучения в университете меня поразили красота и универсальность такого раздела алгебры, как теория групп. Дело в том, что понятие группы широко обобщает фундаментальные свойства симметрии. А о роли симметрии в науке знают все. С любым реальным или мыслимым объектом можно связать группу его симметрий (или по-другому автоморфизмов), то есть некоторых обратимых преобразований, сохраняющих какие-то свойства этого объекта. 
Множества вращений сферы, периодичностей кристалла, симметрий атома - все это примеры групп. Исследовав группу симметрий, можно получить новую информацию уже о самом объекте. Начиная с середины XX века, с расцветом дискретной математики и компьютерных наук все более весомую роль в современной науке играют конечные группы, содержащие конечное число элементов, которые возникают как группы автоморфизмов конечных графов, кодов. 
- Что такое “арифметические характеризации”? Что означает “получить арифметическую характеризацию конечной группы”? 
- Арифметическими принято называть свойства группы, которые определяются ее числовыми параметрами - такими, как, например, количество элементов в группе. - “Получить арифметическую характеризацию конечной группы” - это понять, какие значения принимают некоторые числовые параметры этой группы, какими соотношениями они связаны, и ответить на вопрос, как влияют значения этих параметров на строение самой группы, то есть насколько может отличаться от “нашей” группы другая конечная группа с такими же параметрами. Например, если количество элементов в исследуемой группе - простое число, то она определяется однозначно. Это значит, что другой, отличной от нее, группы с тем же количеством элементов просто не существует. 
Одной из важных задач современной теории групп является изучение арифметических свойств конечных групп и получение арифметических характеризаций таких групп. 
- Почему эта задача важна? 
- Пожалуй, лучший ответ дал Пифагор: “В основе вещей лежит число. Познать мир - значит, познать управляющие им числа”. Такие знания фундаментальны и представляют ценность сами по себе. 
Что касается применения результатов. Допустим, исследуется некоторый объект (математический, физический или какой-то другой). Группу его симметрий заранее мы не знаем. Но из “видимых” свойств самого объекта можем извлечь информацию о каких-то свойствах этой группы, в том числе о некоторых ее арифметических параметрах. И здесь сведения об арифметических свойствах и арифметических характеризациях конечных групп могут быть полезны для того, чтобы “восстановить”, насколько это возможно, группу симметрий объекта, а, исследовав эту группу, получить новую информацию уже о самом объекте. 
“Игрушечный” пример - хорошо известный всем кубик Рубика. Его преобразования, однозначно определяющиеся перестановками 48 нецентральных квадратов граней, образуют группу. С помощью исследований теоретико-групповых и арифметических свойств этой группы были даны оценки минимального числа поворотов граней, необходимых для того, чтобы привести кубик Рубика из любого состояния в то, когда каждая грань одноцветна. Причем было доказано, что если повторять одну и ту же последовательность действий (зафиксированную заранее), то не более чем через 1260 повторений кубик вернется в то самое состояние, из которого мы начинали. 
В реальности на месте кубика Рубика может оказаться, например, кристалл или код, или сеть дорог между городами. То есть, по сути, разрабатываются инструменты, которыми могут воспользоваться другие исследователи для решения своих задач, необязательно математических. 
- Кто-то еще занимается подобными исследованиями? 
- Исследованием арифметических свойств конечных групп занимались многие известные ученые, например, Филипп Холл (Великобритания), Сергей Антонович Чунихин (СССР) и Гельмут Виланд (Германия). Сегодня в России такие исследования ведутся в Новосибирске, Екатеринбурге, Москве, Ярославле, Красноярске. За рубежом - в Австралии, Великобритании, Германии, Италии, Китае, США и некоторых других странах.
- Вы сказали, что теория групп - ваше основное направление. Какие еще исследования ведете? 
- Вообще я очень люблю математику. Поэтому, в принципе, могу увлечься задачей, которая не совсем из моей области. Например, у меня есть пара работ по комбинаторике. А во время обучения в университете писала по несколько курсовых работ каждый год. Чего только ни попробовала: математический анализ, дифференциальные уравнения, теория чисел, теория колец...
- Как вы проводите свои исследования? Я слышал, что у математиков довольно специфическое представление о рабочем дне.
- В моем понимании математическое “производство” разбивается на несколько условных этапов. На первом ставится задача. Как известно, грамотно поставленная задача - это уже половина ее решения. Затем - поиск идеи решения. В обоих случаях это работа творческая, иногда даже интуитивная. Естественно, бывают необходимы и доступ к справочной информации, и знакомство с результатам новейших исследований по тематике, и проведение вычислительного эксперимента, и дискуссии с коллегами. 
Обдумывание задачи не завершается, если оказываешься за пределами рабочего кабинета. Идешь по улице - думаешь, заходишь в магазин - думаешь, еду готовишь - тоже думаешь. Да что там, мне недавно доказательство одного утверждения и вовсе приснилось! Когда решение получено, запускаются два параллельных процесса - апробация результата и работа над текстом статьи. Оба этих этапа также важны для получения качественного результата. Ведь для того чтобы сделать результат понятным и доступным научному сообществу, необходимо его грамотно изложить. 
Иногда как в изложении готовых результатов, так и в постановке новых задач, очень помогают вопросы, которые задают коллеги во время или после твоего доклада на семинаре или конференции. Именно поэтому очное участие в международных конференциях высокого уровня необходимо для проведения качественных исследований. Что касается работы над текстом, то написать, вычитать, корректировать - это уже работа более кропотливая, требующая аккуратности. Трудоемкая и немного скучная, но необходимая.
- Контактируете ли вы с коллегами из России и других стран? 
- У меня многолетний опыт сотрудничества с коллегами из Новосибирска. Более десятка работ в соавторстве. Также есть совместные труды с учеными из Словении и Китая. На этапах постановки задач и поиска идей решения очень важны личный контакт, обсуждения. Стараюсь как можно чаще приезжать в Новосибирск, выступать с докладами на семинарах, проводить совместные исследования. С зарубежными соавторами также работаем во время встреч на конференциях или в ходе коротких визитов. Тексты статей обычно корректируем дистанционно, по электронной почте, внося в них изменения по очереди. Иногда обсуждаем статьи в Skype. Правда, интерактивная дистанционная работа с зарубежными коллегами несколько затруднена из-за разницы в часовых поясах - электронная почта здесь удобнее.
- В каких журналах публикуетесь? Расскажите о процессе подготовки статьи, ее предоставления в журнал.
- Как я уже упоминала, написание текста статьи - это очень важный этап для математического результата. Некоторые статьи пишутся быстро и легко, месяца за два-три. Это действительно быстро, так как изложить полученный результат не всегда просто, тем более необходимо проверить все доказательства на предмет ошибок и неточностей. Но есть труды, которые создаются годами. Сейчас у меня 23 опубликованные работы, еще пять приняты к печати, примерно треть всех работ - без соавторов. 
Выбор подходящего журнала также очень важен. Раньше, сразу после аспирантуры, публиковала статьи в основном в местном журнале. Сейчас посылаю их как в отечественные, так и в зарубежные издания. Для меня в первую очередь важно соответствие тематики статьи тематике журнала. В этом случае редколлегия будет иметь возможность отправить работу на рецензию специалистам, хорошо знакомым с темой исследования. Положительной рецензии это, конечно, не гарантирует, но оценка в таком случае обычно более объективная. Сама сотрудничаю как с отечественными, так и с зарубежными изданиями в качестве рецензента, поэтому примерно представляю, какие журналы публикуют работы по близкой мне тематике. Кроме того, журнал по профилю может порекомендовать кто-то из коллег во время обсуждения результата. 
Требования к оформлению статьи зависят от издания, обычно их легко найти на сайте издания. Иногда статью принимают к печати с первого раза - это когда на нее были получены положительные рецензии, а у рецензентов были минимальные замечания к тексту. Иногда рецензент присылает положительную рецензию на работу, но высказывает серьезные замечания к тексту, и в статью приходится вносить весомые изменения. За такие замечания я особенно благодарна. Считаю, что они помогают улучшить текст статьи. 
В большинстве журналов, с которыми я сотрудничаю как рецензент, статью просят рассмотреть в течение 1-3 месяцев. В то же время на некоторые статьи приходится писать более одной рецензии, когда результат новый и интересный, но, например, изложен неаккуратно. Мой личный рекорд как рецензента - пять рецензий на одну и ту же работу. Естественно, чем дольше идет переписка с автора и рецензентом, тем больше времени проходит с момента направления работы в журнал до момента публикации, если, конечно, работа будет принята к печати. Кроме того, от момента принятия статьи в печать до публикации иногда проходит полгода, иногда год, а бывает, что и больше. Это зависит от величины портфеля журнала. 
- Приходилось слышать от некоторых ученых, что их работа рецензента даже в зарубежных журналах бесплатна. 
- Да, для меня рецензирование - это неоплачиваемая работа. Можно сказать, дань научной добросовестности. 
- Какие у вас ближайшие научные планы?
- Недавно авторскому коллективу, в составе которого я работаю, удалось получить серьезное продвижение в решении большой задачи, продолжающей тематику исследования моей кандидатской диссертации. В ближайшее время хочется закрепить успех и завершить решение. Кроме того, сейчас я заканчиваю подготовку своей докторской диссертации, планирую представить ее к защите. 
Беседу вел Василий ЯНЧИЛИН
Фото предоставлено Н.Масловой


 

Отзывы

Чтобы оставить отзыв необходимо авторизоваться или зарегистрироваться



 

Статьи на тему

Упражнения для обновления. Человеческий мозг преподносит сюрпризы.
Долгое время считалось, что нервные клетки мозга не восстанавливаются, и тому находились многочисленные экспериментальные подтверждения. Однако оказалось, что точку в этом вопросе ставить преждевременно: сегодня мнения ученых на этот счет расходятся. /№ 23(2018)
Гори, алмазная звезда! Геологи осваивают космос.
В Институте геологии Коми НЦ УрО РАН (Сыктывкар) проводят пионерские исследования алмаза и других форм углерода, воспроизводят процессы их образования в природе и синтезируют в лабораторных условиях. /№ 23(2018)
Со дна. Способна ли Россия включиться в битву за ресурсы Мирового океана?
Главный оппонент науки и основное препятствие для ее развития в России - это Минфин, заявил академик Роберт Нигматулин на заседании Президиума РАН, посвященном проблемам исследования и освоения ресурсов Мирового океана. /№ 22(2018)

Новости


Российский археолог доктор исторических наук, профессор Василий Любин, который 13 января отметил 100-летие, скончался в Санкт-Петербурге, сообщила пресс-служба Института истории материальной культуры РАН, где работал ученый.



Комитет Госдумы по образованию и науке проголосовал за свою редакцию поправки к закону о РАН, предложенной правительством.



Более 50 стран станут участниками Московского международного форума «Город образования», который пройдет с 30 августа по 2 сентября на ВДНХ. В этом году Москва ожидает на его площадке 100 тысяч гостей и посетителей, 200 ведущих российских и международных экспертов, 100 компаний-экспонентов.



Президент Российской академии наук Александр Сергеев заявил, что в 2018 году РАН может открыть свое представительство во Франции. На первом этапе оно будет работать в стенах Французской академии наук, а возглавит его один из членов РАН.

Вице-премьер Татьяна Голикова встретилась с заместителем премьера Госсовета КНР Сунь Чуньлань, которая прибыла во главе китайской делегации для участия в церемонии открытия Чемпионата мира по футболу.

Модель аспирантуры необходимо усовершенствовать, заявил ректор Российского университета дружбы народов, председатель ВАК Владимир Филиппов в ходе круглого стола «Актуальное законодательство обеспечения научной и образовательной деятельности». Об этом сообщил федеральный портал «Российское образование».

В Фундаментальной библиотеке МГУ состоялась встреча студентов Московского университета с легендами мирового футбола: экс-полузащитником нашей сборной Валерием Карпиным, автором победного гола сборной Германии в финале Чемпионата мира 1990 года Андреасом Бреме и чемпионом мира 2010 года испанским вратарем Икером Касильясом.

Конференции


Шесть дней - с 29 мая по 3 июня - продлится II Международная научно-практическая конференция «Игровая культура современного детства». И если первый день пройдет в формате привычных докладов и лекций, то остальные пять станут экспериментом. На площадках интерактивного фестиваля «Да-Игра!» ученые в области детской психологии и педагогики проведут мастер-классы и открытые лекции для специалистов и родителей.

II Всероссийская научно-практическая конференция “Совершенствование системы взаимодействия Российского фонда фундаментальных исследований и субъектов Российской Федерации в вопросах проведения региональных и молодежных конкурсов”

Пятая конференция разработчиков российских операционных платформ «OS DAY. Надежность» состоится 17-18 мая 2018 г. в Москве, в главном здании Российской академии наук. Основной темой для обсуждения среди теоретиков и практиков системного программирования и разработки ОС станет вопрос надежности. Участники рассмотрят методы проектирования и разработки надежных платформ, инструментальные средства обеспечения надежности программно-аппаратных систем как на этапе разработки, так и на этапе эксплуатации.

Текущие конкурсы


Международный научный фонд экономических исследований академика Н.П.Федоренко (МНФЭИ) объявляет конкурсы 2018 года

Конкурс проектов 2018 года фундаментальных научных исследований, проводимый федеральным государственным бюджетным учреждением “Российский фонд фундаментальных исследований” совместно с субъектами Российской Федерации

Конкурс проектов 2018 года междисциплинарных фундаментальных научных исследований, проводимый федеральным государственным бюджетным учреждением “Российский фонд фундаментальных исследований” совместно с субъектами Российской Федерации

Конкурс проектов 2018 года фундаментальных научных исследований, выполняемых молодыми учеными, проводимый федеральным государственным бюджетным учреждением “Российский фонд фундаментальных исследований” совместно с администрацией Волгоградской области

Конкурс на лучшие проекты фундаментальных научных исследований по теме “История Евразии в материальных памятниках древности: традиции и современные подходы в археологических исследованиях” (“Древности”)

Вакансии


13.04.2018
Федеральное государственное автономное образовательное учреждение высшего образования “Московский физико-технический институт (государственный университет)” объявляет конкурс на замещение должностей педагогических работников, относящихся к профессорско-преподавательскому составу

02.03.2018
объявляет конкурс на замещение вакантных должностей:

17.11.2017
Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии минералогии и геохимии Российской академии наук (ИГЕМ РАН) объявляет конкурс на замещение вакантной должности...




опрос

Какие рубрики нашей газеты Вам наиболее интересны?




Copyright 2010
Главная страница   |   О газете  |  Партнеры  |  Команда Поиска  |  Вакансии