Уникальный гидрогель поможет восстановлению нервных клеток

14.08.20
То, что нервные клетки восстанавливаются, уже не новость. Новость в том, что ученые Школы биомедицины ДВФУ разработали гидрогели из пектина, которые могут выполнять функцию искусственного внеклеточного пространства (матрикса). Применять разработку можно в реабилитации пациентов, перенесших удаление опухоли мозга — как средство доставки лекарств и среду для восстановления нервных связей. Кроме того, гидрогели можно использовать в качестве среды для выращивания нервных клеток и тканей органов в лабораторных условиях или же консервации клеток в биоинженерных целях.  Статья об этом опубликована  в International  Review of Neurobiology.

Гидрогели, разработанные в ШБМ ДВФУ, это растительные углеводные материалы из модифицированных биоинженерными методами пектинов. Они подходят для восстановления нервной ткани, поврежденной злокачественной трансформацией при развитии опухолей мозга, а также в результате травм и нейродегенеративных болезней, при которых наблюдается гибель или потеря функциональной активности клеток и их окружения.

«Некоторые варианты наших внеклеточных матриксов-гидрогелей способны подавлять размножение клеток глиомы, злокачественной опухоли головного мозга, а их химические модификации можно использовать, чтобы сохранять потенциал нормальных нервных стволовых клеток, «консервировать» их в недифференцированном состоянии, сохраняя их жизнеспособность и потенциал на будущее. Это интересно для развития клеточных биотехнологий регенеративной медицины, — рассказывает руководитель исследовательской группы Вадим Кумейко, заместитель директора по развитию ШБМ ДВФУ. — Безусловно, биоинженерные решения, связанные с применением внеклеточных матриксов из пектинов, нуждаются в тщательной проверке. Однако мы рассчитываем, что в перспективе наши гидрогели можно будет имплантировать в область резекции опухоли мозга, чтобы убивать оставшиеся после операции опухолевые клетки, одновременно сохраняя потенциал здоровых клеток для дальнейшего восстановления».

Ученый объяснил, что в человеческом организме внеклеточное пространство представляет собой сложную молекулярную сеть – матрикс, который состоит из двух главных компонентов: белкового и углеводного. Матрикс нервной системы отличается от матрикса многих тканей тем, что он в большей степени углеводный, напоминает по физико-химическим свойствам мармелад или «птичье молоко». Этим он существенно отличается от более упругого и жесткого матрикса с преобладанием белкового компонента, который свойственен для соединительных тканей. По углеводному матриксу клеткам практически невозможно передвигаться.

«Так задумано природой специально, чтобы у взрослых организмов клетки мозга не мигрировали с легкостью в новые области и не образовали слишком быстро новых электрических связей, что грозит, например, утратой памяти, приобретенных навыков и знаний. Представьте, вечером вы знали иностранный язык, а за ночь клетки мигрировали, и вы все забыли», — объясняет Вадим Кумейко.

Проблема в том, что опухолевые клетки управляют жесткостью окружающего их внеклеточного пространства, добавляя в него белковые компоненты. Таким образом они сами «стелят» себе дорогу, по которой убегают, чтобы метастазировать и образовывать новые опухоли в других регионах организма.

«Имплантированный после удаления опухоли матрикс с преобладанием углеводного компонента не только сдержит рост и распространение клеток, но и прекрасно подойдет в качестве средства доставки высокотоксичных лекарств. Такие лекарства будут высвобождаться из него постепенно, нанося меньший вред организму в целом, и убивая оставшиеся опухолевые клетки. На следующем этапе, чтобы стимулировать регенерацию и рост отростков нервных клеток, можно посредством инъекции имплантировать в прооперированную область более жесткий матрикс, включающий большую долю белков», — говорит Вадим Кумейко.

Ученый уточнил, что подобный подход был предложен его исследовательской группой чуть ранее во Frontiers in Bioengineering and Biotechnology, новая статья посвящена частичному экспериментальному обоснованию концепции.

В дальнейшем ученые планируют исследовать, как состав пектинового матрикса будет влиять на скорость высвобождения лекарств, и какое сочетание углеводных и белковых компонентов будет способствовать восстановлению нервной ткани без рубцов и характерной для опухолевой ткани чрезмерной плотности.

В целом, пока что в мире очень мало материалов, которые одобрены для биоинженерии нервной ткани и клинической практики, в основном, они предназначены для регенерации периферической, а не центральной нервной системы.

Нет комментариев